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Abstract – We demonstrate a quantitative stress indicator as well as a qualitative hard-sphere
lattice model to characterize the effective volume and stability of interstitial helium in fcc and
bcc metals, based on extensive first-principles total-energy and lattice stress calculations in
combination with continuum elastic theory analyses. The concept of stress indicator is believed
to be generally applicable to quantify the relative stability of other inert gas elements in metals.
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Helium (He) is a typical impurity in metals. The solu-
bility of He in metals is extremely low, yet it can lead
to significant changes in microstructure and mechan-
ical properties. The well-known example is the high-
temperature He embrittlement at extremely low concen-
tration [1–3]. Helium is produced from (n, α) transmu-
tation reactions in both fission and fusion, resulting in
radiation damage and mechanical property degradation of
metals [3,4]. Since He has a closed shell electronic structure
forming very weak chemical bonding with the host metal
atoms, the stability of He in metals should be well charac-
terized by its “effective volume”, which is determined by
its atomic size relative to the available volume provided
by the given interstitial site. For this reason, the relative
stability of He at different interstitial sites in a lattice is
usually gauged by a lattice model [5–7]. However, this has
often caused confusion and controversy [5–7] because the
size of an interstitial site can be ambiguous depending
on what lattice models are used. Therefore, developing a
theoretical model to quantify the He effective volume in
metals is fundamental to the understanding of its stability
and effects on mechanical properties of metals.
Conventionally, the volume of He at an octahedral

interstitial site (OIS) is considered to be larger than that
at a tetrahedral interstitial site (TIS) in both face-centered
cubic (fcc) and body-centered cubic (bcc) metals [5–7].
This would suggest that He prefer to occupy the OIS
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instead of TIS. However, the OIS occupation for He is
found in fcc metals [8,9], while the TIS occupation is found
in bcc metals [5–7,10,11]. The unexpected TIS occupation
of He in bcc metals motivated a series of investigations.
Seletskaia et al. attributed the TIS preference of He in
bcc Fe to the magnetism [5], but was contradicted by the
first-principles calculations by Zu et al. [7]. It was also
suggested that a strong hybridization between the He p
states and transition metal d states may change the He
site preference in bcc metals [5–7]. However, such strong
hybridization was questioned by Fu and Willaime [10],
given the closed shell structure of He.
The controversy on the site preference of interstitial He

in metals stems largely from the lack of a reliable approach
to define the effective volume of He, namely the “size” of
the TIS vs. the OIS; the empirical lattice models used
previously [5–7] are incorrect. Here, we develop a unified
approach to quantify the effective volume of interstitial
He in different metals by the “lattice stress” induced
by He, which can be directly calculated using the first-
principles methods. We show that the effective volume of
He and hence its solution energy scales quadratically with
the square of the He-induced stress, following the linear
elastic theory, as confirmed by first-principles total-energy
and stress calculations of He in ten fcc and bcc metals.
Furthermore, we show that the hard-sphere lattice model
gives the best empirical estimate of the effective volume
of He in both fcc and bcc metals, while the point-lattice
and Voronoi polygon model are qualitatively incorrect.
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Table 1: Solution energy (in eV) and formation volume (in Å3) of He, the He-induced stress (in GPa), the relative stability, and
the ratio of stress at the TIS over OIS in fcc and bcc metals.

fcc bcc

Pd Al Au Pt Ag W Mo Fe Cr V

Solution TIS 3.82 3.43 3.28 5.18 3.07 6.13 5.21 4.56 5.18 3.05

energy OIS 3.68 3.25 2.92 4.73 2.82 6.37 5.41 4.77 5.38 3.28

Formation TIS 9.39 16.2 16.9 10.8 14.7 5.32 5.58 7.85 5.55 5.61

volume OIS 8.25 13.9 14.8 9.52 12.5 5.56 5.64 8.57 5.72 6.11

XX −1.97 −1.79 −2.54 −2.29 −1.31
TIS YY −3.33 −2.21 −4.03 −5.24 −2.49 −1.87 −1.76 −2.61 −2.59 −1.79

σ
ZZ −1.97 −1.79 −2.54 −2.29 −1.31
XX −1.58 −1.48 −2.38 −1.98 −1.59

OIS YY −2.82 −1.89 −3.42 −4.51 −2.05 −1.58 −1.48 −2.38 −1.98 −1.59
ZZ −2.89 −2.55 −3.24 −3.44 −1.81

ETISs /E
OIS
s 1.04 1.06 1.12 1.10 1.09 0.96 0.96 0.96 0.96 0.93

∑
σ2ii,TIS/

∑
σ2ii,OIS 1.39 1.37 1.39 1.35 1.48 0.84 0.87 0.90 0.87 0.80

Our total energy calculations were performed within
the density functional theory as implemented in the
VASP code [12,13]. We use the generalized gradient
approximation of Perdew and Wang [14] and projected
augmented wave potentials [15]. We found that a
plane wave energy cutoff of 350 eV is large enough
for all metal systems to ensure the total energy and
stress convergence, consistent with previous calculations
[6,11,16–20]. The Brillouin zone sampling was performed
using the Monkhorst-Pack scheme [21], with 6× 6× 6
k-point meshes for a 32 atom supercell in fcc metals and
5× 5× 5 k-point meshes for a 54 atom supercell in bcc
metals. The energy minimization was converged until
the forces on all the atoms are less than 10−3 eV Å−1.
We check the supercell size by investigating the solution
energy and the stress for the supercell containing different
number of atoms. The solution energy of He converges at
the 54-atom supercell in comparison with the 128-atom
one. For example, the solution energy of He at the TIS in
W is 6.13 eV for the 54-atom supercell, while it is 6.14 eV
for the 128-atom supercell. Further, it is shown that the
stress induced by He in a 128-atom cell equals to that in
the 54-atom cell scaled by their volume ratio.
A metal lattice is stress free at equilibrium. When a

He atom is introduced at an interstitial site, it induces
a lattice stress depending on He density. In general,
this stress has contributions from both the atomic size
effect, i.e., the mismatch between the size of He atom
and the available volume provided by the interstitial site,
and the electronic effect, i.e., the He-induced change of
lattice electronic structure giving rise to a quantum stress
effect [22]. Then, the He solution energy (Es) can be
well characterized by the He-induced lattice deformation
energy, which scales quadratically with the He-induced
lattice stress (σ) as Es ∼

∑
σ2ii/E [23], where double

indices (ii) indicates summation over three Cartesian
components, and E is the elastic modulus of the He-doped
lattice. Then, we can assess the relative stability of He
at different interstitial sites, i.e. TIS vs. OIS, in a given
lattice by the ratio of the He-induced lattice stress at the
two sites

ETISs
EOISs

= α ·
∑
σ2ii,TIS∑
σ2ii,OIS

(1)

where the coefficient α is a constant depending on lattice
type. To test the above hypothesis, we performed exten-
sive first-principles calculations of interstitial He in ten
different metals, including fcc metals of Pd, Al, Au, Pt,
and Ag and bcc metals of W, Mo, Fe, Cr, and V. Table 1
shows the calculated He solution energies along with the
He-induced lattice stress. Our results of solution energies
are in good agreement with previous calculations [5–11].
The main energetic results are the He favors the OIS in fcc
metals; while it favors the TIS in bcc metals. The stress
results are new and interesting. In all cases the He induces
a compressive (negative sign) stress, indicating that the
size of He is larger than the available lattice volume. The
stress is isotropic in fcc metals because of the symmetric
geometry of TIS and OIS structure (fig. 1(a) and (b)),
but anisotropic in bcc metals because of the asymmetric
geometry of TIS and OIS structure (fig. 1(c) and (d)).
The solution energies of He also can be deduced from

the calculated stress tensor using the elastic theory [23],
as listed in table 2. Relatively, He is predicted by the
elastic stress model to favor the OIS in fcc metals, but
the TIS in bcc metals, which is in good agreement with
the DFT results. However, the absolute value of the
individual solution energy as obtained from the stress
model does not agree very well with the DFT calculated
energy. One possible reason for this is that the elasticity
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Table 2: Solution energy (in eV) of He given by the elastic calculations at the TIS over OIS in fcc and bcc metals.

fcc bcc

Pd Al Au Pt Ag W Mo Fe Cr V

Solution TIS 0.23 0.33 0.67 0.57 0.33 0.10 0.09 0.22 0.16 0.11

energy OIS 0.17 0.24 0.48 0.42 0.22 0.12 0.11 0.25 0.18 0.14

Fig. 1: (Colour on-line) The interstitial sites in fcc and bcc
metals. (a) fcc, TIS; (b) fcc, OIS; (c) bcc, TIS; (d) bcc, OIS.
The larger blue spheres represent the metal atoms, while the
smaller gray spheres represent the He atoms.

theory assumes a macroscopic continuum description,
which cannot capture the detailed microscopic interaction
between He and metal atoms, such as the displacement
of metal atoms induced by He insertion. In addition, the
lattice constant may change upon He doping, especially
for a very large doping concentration we used in supercell
DFT calculations. These and other factors make the direct
comparison of absolute energies unfeasible.
Overall, however, the stress model prediction correlates

closely with the solution energy: the OIS is favored in fcc
metals but the TIS is favored in bcc metals. Most impor-
tantly, we plot in fig. 2, the relative stability of He at the
TIS over the OIS as a function of the ratio of the He-doping
induced elastic energy at the two sites, which agrees
perfectly with eq. (1). Quantitatively, in fcc metals, the
ratios are ETISs /E

OIS
s ∼ 1.082 and ∑σ2ii,TIS/

∑
σ2ii,OIS ∼

1.396, giving rise to αfcc = 0.775; in bcc metals, the ratios
are ETISs /E

OIS
s ∼ 0.954 and ∑σ2ii,TIS/

∑
σ2ii,OIS ∼ 0.856,

giving rise to αbcc = 1.114. Thus, the He-induced lattice
stress provides an accurate quantitative “indicator” of the
effective volume of He in all the cases studied, providing
an unambiguous way to assess the relative stability of He
in different interstitial sites.
The embedding of He in metals is known to induce

a volume change, i.e., formation volume, which has
been used to characterize the doping stability. However,
conventionally, formation volume is considered as a
“scalar” indicating an “isotropic” uniform volume expan-
sion/contraction. In contrast, the stress we introduce
here is a “tensor” that can be anisotropic, as in the case
for both TIS and OIS in bcc metals. An anisotropic
stress means that the volume expansion/contraction
is anisotropic, i.e. expansion/contraction is different

Fig. 2: (Colour on-line) The ratio of solution energy vs. the
ratio of He-induced stress at the TIS vs. OIS in fcc and bcc
metals.

along different axes. This new insight is missing in the
conventional picture of formation volume. Normally,
one would calculate the formation volume by uniformly
expand/shrink the lattice until the energy is minimized,
which was in fact incorrect if the doping induced lattice
stress is anisotropic. Instead, one should expand/shrink
lattice by different amounts along different axes following
the anisotropic stress values. Therefore, we have calcu-
lated the formation volume of He at the TIS and the OIS
in metals by relaxing the lattice to minimize the stress
tensor to zero, as listed in table 1. The resulting formation
volume equals to the product of ∆V =∆a×∆b×∆c,
where ∆a,∆b and ∆c scales with the stress values along
the x-, y- and z-axis. Our calculated formation volume
is shown in table 1 to characterize well the relative
stability of He in metals. It is worthy to note that
the stress model provides important new insight of the
“shape” of formation volume given by stress anisotropy
(ratios of σii/σjj) in addition to the “size” of formation
volume given by the trace of stress tensor (

∑
σii) [24].

Therefore, the stress approach should be preferred over
the conventional volume approach because the stress, as
a tensor, gives a more correct and complete picture than
volume, as a scalar. As shown in table 1, the He-induced
stress tensor is anisotropic for the asymmetry interstitial
TIS and OIS sites in a bcc structure. This feature is not
meant to be captured by a volume relaxation without
the stress information. In some sense, the formation
volume is an average effect of He induced stress, but it
misses some microscopic details associated with the local
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Table 3: Interstitial volume in units of a30 based on different lattice models, where a0 is the lattice constant.

Lattice model V fccTIS V fccOIS V bccTIS V bccTIS V fccTIS/V
fcc
OIS V bccTIS/V

bcc
OIS

Point-lattice 1/24 1/6 1/12 1/3 0.25 0.25

Voronoi 0.1319 0.1246 0.2568 0.2511 1.06 1.02

Hard-sphere 0.0021 0.0131 0.0084 0.0013 0.16 6.46

Table 4: The He-induced lattice strain estimated from different lattice models.

Lattice
fcc bcc

Pd Al Au Pt Ag W Mo Fe Cr V

Point-lattice
TIS 0.13 0.15 0.18 0.14 0.17 −0.08 −0.09 −0.22 −0.21 −0.15
OIS 0.45 0.47 0.48 0.46 0.48 0.32 0.31 0.23 0.24 0.27

Voronoi
TIS 0.25 0.27 0.29 0.27 0.30 0.26 0.25 0.16 0.17 0.21

OIS 0.24 0.26 0.28 0.24 0.29 0.25 0.25 0.16 0.16 0.20

Hard-sphere
TIS −1.97 −1.89 −1.81 −1.94 −1.83 −1.32 −1.34 −1.61 −1.60 −1.48

OIS −0.61 −0.57 −0.53 −0.60 −0.54 −3.35 −3.42 −3.94 −3.88 −3.67

symmetry of interstitial site. Furthermore, the stress
tensor is calculated only once at the equilibrium lattice
constant without the need of lattice relaxation. This
saves computational time than doing formation volume
calculation which requires a number of lattice relaxation
steps until the lowest-energy lattice is found.
Next, we examine which empirical lattice model is the

most reasonable choice in estimating the effective volume
of He, based on the quantitative stress indicators shown
above. We consider three different lattice models: point-
lattice, Voronoi polygon, and hard-sphere model, as shown
in table 3. The point-lattice model was introduced as early
as in the 17th century, which has been adopted most often
in analyzing He interstitials in metals previously [5–7].
According to the point-lattice model, the TIS volume is
four times smaller than the OIS volume in both fcc and bcc
metals (table 3). Another popular ancient lattice model is
the Voronoi polyhedron model originally introduced by
Voronoi in 1907 [25]. According to the Voronoi model,
the TIS volume is slightly larger than the OIS volume
in both fcc and bcc metals (table 3), as calculated from a
Voro++ code [26]. The third hard-sphere lattice model
was originally introduced by Kepler in 1611 [27], as
schematically depicted in fig. 3. According to the hard-
sphere model, the TIS volume is much smaller than
the OIS volume in fcc metals, while it is much larger
than the OIS volume in bcc metals (table 3). Therefore,
qualitatively, both the point-lattice and Voronoi models
would predict the same behavior for He in fcc and bcc
metals, contradicting with the first-principles results of
He solution energies and stresses shown above; while only
the hard-sphere model will predict a different behavior
in the two types of metals, in agreement with the first-
principles results. Despite such good agreement, the hard
sphere model is a relatively simple model which can be

Fig. 3: (Colour on-line) Hard-sphere model for the TIS and
OIS in bcc and fcc metals. (a) fcc, (100) plane; (b) fcc, TIS,
(1−10) plane; (c) fcc, OIS, (100) plane; (d) bcc, (1−10) plane;
(e) bcc, TIS, (100) plane; (f) bcc, OIS, (1−10) plane. The larger
blue spheres represent the metal atoms, while the smaller gray
spheres represent the He atoms.

more conveniently used as an initial qualitative estimate
without doing any calculation.
More specifically, one needs to compare the atomic

volume of He with the available interstitial volume, as
predicted from the different lattice models, to see how well
the He atom fits in the lattice. We may estimate the He-
induced lattice stress or strain (ε) occupying an interstitial
site in metals by

ε=−RHe−Rint
Rint

, (2)

where RHe = 0.93 Å is the covalent radius of He [28], and
Rint is the effective radius of interstitial sites. In eq. (2) we
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use the sign convention so that if RHe is larger (smaller)
than Rint, the He atom induces a “negative” compressive
(“positive” tensile) lattice strain. We calculate Rint using
different lattice models by approximating the interstitial
volume (see table 3) as a sphere. Table 4 shows only
the hard-sphere model gives the compressive strains for
He in both fcc and bcc metals, consistent with the first-
principles stress results (table 1). It indicates that the
atomic volume of He is larger than the effective volume
of interstitial sites in all the cases. In contrast, the point-
lattice and Voronoi models give the wrong sign of strain
or the size of effective volume, except the case of bcc
TIS by the point-lattice model. This shows that only the
hard-sphere model is qualitatively correct to be used as
an empirical “indicator” to assess the effective interstitial
volume for He in metals. Quantitatively, however, the
model overestimates the difference between the TIS and
OIS.
We believe that the quantitative stress “indicator” will

be applicable not only to interstitial sites, but more
generally also to other cases including defects such as
vacancy, dislocation or grain boundary in metals. For
example, our calculations show that He at a monovacancy
site in bcc W induces an isotropic compressive stress of
−0.33GPa, given the symmetric local geometry. It is much
lower than the compressive stress induced by the He at the
TIS and OIS in W (see table 1). This suggests the effective
volume of He is largest at the monovacancy. The relative
stability of He is found in descending order from vacancy
to TIS and to OIS from both stress model and direct DFT
solution energies.
In conclusion, we demonstrate a theoretical scheme to

quantify the effective volume and hence stability of He in
metals. We show that the effective volume can be approxi-
mated by the hard-sphere lattice model, but not the point-
lattice or the Voronoi polygon model. We propose that
the effective volume and thus the relative stability of He
at different interstitial sites can be quantitatively charac-
terized by the He-induced lattice stresses in metals. We
believe that the concept of stress indicator is generally
applicable to quantify the relative stability of other inert
gas elements in metals.
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